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Abstract

The Cahn-Hilliard equation involves fourth-order spatial derivatives. Finite ele-
ment solutions are not common because primal variational formulations of fourth-
order operators are well defined and integrable only if the finite element basis func-
tions are piecewise smooth and globally C1-continuous. There are a very limited
number of two-dimensional finite elements possessing C1-continuity applicable to
complex geometries, but none in three-dimensions. We propose Isogeometric Anal-
ysis as a technology that possesses a unique combination of attributes for complex
problems involving higher-order differential operators, namely, higher-order accu-
racy, robustness, two- and three-dimensional geometric flexibility, compact support,
and, most importantly, the possibility of C1 and higher-order continuity. A NURBS-
based variational formulation for the Cahn-Hilliard equation was tested on two- and
three-dimensional problems. We present steady state solutions in two-dimensions
and, for the first time, in three-dimensions. To achieve these results an adaptive
time-stepping method is introduced. We also present a technique for desensitiz-
ing calculations to dependence on mesh refinement. This enables the calculation
of topologically correct solutions on coarse meshes, opening the way to practical
engineering applications of phase-field methodology.
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1 Introduction

1.1 Phase transition phenomena: the phase-field approach

Two different approaches have been used to describe phase transition phenom-
ena: sharp-interface models and phase-field (diffuse-interface) models. Tradi-
tionally, the evolution of interfaces, such as the liquid-solid interface, has been
modeled using sharp-interface models [37,70]. This entails the resolution of a
moving boundary problem. Thus, the partial differential equations that hold
in each phase (for instance, describing mass conservation and heat diffusion)
have to be solved. These equations are coupled by boundary conditions on
the interface, such as the Stefan condition demanding energy balance and the
Gibbs-Thomson equation [6,21,59]. Across the sharp interface, certain quan-
tities (e.g., the heat flux, the concentration or the energy) may suffer jump
discontinuities. The free-boundary (sharp-interface) description has been a
successful model in a wide range of situations, but it also presents complica-
tions from the physical [2] and computational [15] points of view.

Phase-field models provide an alternative description for phase-transition phe-
nomena. The phase-field method has been used to model foams [32], describe
solidification processes [10,63], dendritic flow [49,53], microstructure evolution
in solids [34], and liquid-liquid interfaces [61]. For recent reviews of phase-field
methods the reader is referred to [16,30].

The key idea in phase-field models is to replace sharp interfaces by thin tran-
sition regions where the interfacial forces are smoothly distributed. Explicit
front tracking is avoided by using smooth continuous variables locating grains
or phase boundaries.

Phase-field models can be derived from classical irreversible thermodynam-
ics [40]. Utilizing asymptotic expansions for vanishing interface thickness, it
can be shown that classical sharp-interface models, including physical laws at
interfaces and multiple junctions, are recovered [36,38]. In order to capture
the physics of the problem, the transition regions (diffuse interfaces) in the
phase-field models have to be extremely thin.

The use of diffuse-interface models to describe interfacial phenomena dates
back to Korteweg [55] (1901), Cahn and Hilliard [12] (1958), Landau and
Ginzburg [56] (1965) and van der Waals [72] (1979).

The Cahn-Hilliard phase-field model is normally used to simulate phase seg-

∗ Corresponding author
Email address: hgomez@ices.utexas.edu (Héctor Gómez1,2).
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regation of a binary alloy system, but many other applications, such as, image
processing [23], planet formation [69] and cancer growth [33] are encountered
in the literature.

1.2 Numerical methods for the Cahn-Hilliard phase-field model

1.2.1 Spatial discretization

The Cahn-Hilliard equation involves fourth-order spatial partial-differential
operators. Traditional numerical methodologies for dealing with higher-order
operators on very simple geometries include finite differences (see applica-
tions to the Cahn-Hilliard equation in [35,67]) and spectral approximations
(solutions to the Cahn-Hilliard equation can be found in [58,60,76,77]). In
real-world engineering applications, simple geometries are not very relevant,
and therefore more geometrically flexible technologies need to be utilized. It
is primarily this reason that has led to the finite element method being the
most widely used methodology in engineering analysis. The primary strength
of finite element methods has been in the realm of second-order spatial op-
erators. The reason for this is variational formulations of second-order opera-
tors involve integration of products of first-derivatives. These are well defined
and integrable if the finite element basis functions are piecewise smooth and
globally C0-continuous, which is precisely the case for standard finite element
functions. On the other hand, fourth-order operators necessitate basis func-
tions that are piecewise smooth and globally C1-continuous. There are a very
limited number of two-dimensional finite elements possessing C1-continuity
applicable to complex geometries, but none in three-dimensions (see [66] for a
recent study on C1-continuous finite elements). As a result, a number of differ-
ent procedures have been employed over the years to deal with higher-order
operators. All represent theoretical and computational complexities of one de-
gree or another. Unfortunately, it may be said that after 50 years of finite
element research, no general, elegant and efficient solution of the higher-order
operator problem exists.

For the above reasons, finite element solutions to the Cahn-Hilliard equation
are not common. The most common way to solve this equation in finite ele-
ment analysis has been with mixed methods [4,5,9,24–26,31] rather than the
use of C1-continuous function spaces [28]. Recently, a discontinuous Galerkin
(DG) formulation has been proposed (see [75]). All of these methods lead to
the introduction of extra degrees of freedom in addition to primal unknowns.
As a consequence, an alternative approach is desirable. Perhaps, the most ef-
ficient procedure developed to date is the so-called continuous/discontinuous
Galerkin (CDG) method [29,74]. In this method, standard C0-continuous finite
element basis functions are used in conjunction with a variational formulation
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that maintains C1-continuity weakly through use of discontinuous Galerkin
operators on derivatives. This eliminates extra degrees of freedom at the price
of the inclusion of the discontinuous Galerkin operators which change the data
structure from the normal one based solely on element interior contributions to
one in which element edge or surface contributions are additionally required.
Nevertheless, due to the reduction in degrees of freedom, this method seems
to have the advantage over others previously proposed.

Recently, a new methodology, Isogeometric Analysis, has been introduced that
is based on recent developments in computational geometry and computer
aided design (CAD) [46]. Isogeometric analysis is a generalization of finite el-
ement analysis possessing several advantages: 1) It enables precise geometric
definition of complex engineering designs thus reducing errors caused by low-
order, faceted geometric approximation of finite elements. 2) It simplifies mesh
refinement because even the coarsest model precisely represents the geometry.
Thus, no link is necessary to the CAD geometry in order to refine the mesh,
in contrast with the finite element method, in which each mesh represents a
different approximation of the geometry. 3) It holds promise to simplify the
mesh generation process, currently the most significant component of analysis
model generation, and a major bottleneck in the overall engineering process.
4) The k-refinement process, unique to isogeometric analysis among geomet-
rically flexible methodologies, has been shown to possess significant accuracy
and robustness properties, compared with the usual p-refinement procedure
utilized in finite element methods [3,20].

k-refinement is a procedure in which the order of approximation is increased,
as in the p-method, but continuity (i.e., smoothness) is likewise increased,
in contrast to the p-method. Isogeometric analysis, thus, presents a unique
combination of attributes that can be exploited on problems involving higher-
order differential operators, namely, higher-order accuracy, robustness, two-
and three-dimensional geometric flexibility, compact support, and, most im-
portantly, C1 and higher-order continuity. In addition, higher-order continuity
is achieved without introducing extra degrees of freedom. These properties
open the way to application to phase-field models. Herein, we report our initial
efforts to simulate higher-order operators using isogeometric analysis. Higher-
order operators are encountered in biomedical applications and in many areas
of engineering, such as, for example, liquid-liquid flows, liquid-vapor flows,
emulsification, cancer growth, rotation-free thin shell theory, strain-gradient
elastic and inelastic material models, and dynamic crack propagation, etc. The
simplicity of isogeometric analysis compared with many procedures that have
been published in the literature is noteworthy. We believe it may prove an
effective procedure for solving problems of these kinds on complex geometries.
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1.2.2 Time discretization

The time integration of the Cahn-Hilliard equation is not trivial. The non-
linear fourth-order term imposes severe time-step size restrictions for explicit
methods, thus mandating the use of implicit or (at least) semi-implicit algo-
rithms. Under the non-realistic hypothesis that assumes the mobility to be
constant, the fourth-order term of the Cahn-Hilliard equation becomes linear.
One can take advantage of this fact by using a semi-implicit time integrator
that treats the fourth-order term implicitly, while the non-linear second-order
term is treated explicitly [77,43]. This technique allows a somewhat larger time
step than explicit methods while avoiding the use of nonlinear solvers. How-
ever, in this paper we are interested in the thermodynamically relevant case,
where the mobility depends on concentration and the fourth-order term is no
longer linear. As a consequence, we will use a fully implicit time integration
scheme which requires the use of a nonlinear solver.

Adaptive time stepping is of prime importance because the dynamic response
of the Cahn-Hilliard equation intermittently experiences fast variations in
time. The usual approach presented in the literature for simplified versions
of the Cahn-Hilliard equation has been to use a few (2 or 3) different time-
step sizes during the simulation [14]. These time steps are not selected by
means of accuracy criteria, but by using approximate theories of the late-
time behavior of the Cahn-Hilliard equation [73]. In this paper we propose an
adaptive-in-time method where the time step is selected by using an accuracy
criterion. This allows us to reduce the compute time by factors of hundreds
while ensuring that sufficient time accuracy is achieved. (Another approach
that has been used in the literature to speed up the solution is the use of
multigrid methods [51,52], which is not pursued in this work.)

2 The strong form of the Cahn-Hilliard equation

Let Ω ⊂ R
d be an open set, where d = 2 or 3. The boundary of Ω, assumed

sufficiently smooth, is denoted Γ. The unit outward normal to Γ is denoted
n. We assume the boundary Γ is composed of two complementary parts, Γ =
Γg ∪ Γs. A binary mixture is contained in Ω and c denotes the concentration
of one of its components. The evolution of the mixture is assumed governed
by the Cahn-Hilliard equation. In strong form, the problem can be stated as:
find c : Ω× (0, T ) 7→ R such that
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∂c

∂t
= ∇ · (Mc∇(µc − λ∆c)) in Ω× (0, T ), (1.1)

c = g on Γg × (0, T ), (1.2)

Mc∇(µc − λ∆c) · n = s on Γs × (0, T ), (1.3)

Mcλ∇c ·n = 0 on Γ× (0, T ), (1.4)

c(x, t) = c0(x) in Ω. (1.5)

where Mc is the mobility, µc represents the chemical potential of a regular
solution in the absence of phase interfaces and λ is a positive constant such
that

√
λ represents a length scale of the problem. This length scale is related

to the thickness of the interfaces that represent the transition between the two
phases.

Remarks:

(1) In most of the existing analytic studies, as well as numerical simulations,
the mobility is assumed to be constant. However, according to thermo-
dynamics [11], it should depend on the mixture composition. This depen-
dence might produce quite important changes of the coarsening kinetics.
In this paper we consider the commonly adopted relationship

Mc = Dc(1− c) (2)

in which D is a positive constant which has dimensions of diffusivity, that
is, length2/time. This relationship appeared in the original derivation of
the Cahn-Hilliard equation [11] and is commonly referred to as degenerate
mobility, as pure phases have no mobility. We observe that relation (2)
restricts the diffusion process primarily to the interfacial zones, which
is precisely what happens in many physical situations where movement
of atoms is confined to the interfacial region [11]. The reader is referred
to the paper by Elliott and Garcke [27] for a proof of the existence of
weak solutions of the Cahn-Hilliard equation with degenerate mobility.
Further information about the regularity of the solutions can be found in
[50]. Numerical simulations of the Cahn-Hilliard equation with degenerate
mobility are reported on in [4,74,75].

(2) The function µc is a highly nonlinear function of the concentration rep-
resenting the chemical potential of a uniform solution [12]. It is usually
approximated by a polynomial of degree three. In this paper we consider
the thermodynamically consistent function, namely

µc =
1

2θ
log

c

1− c
+ 1− 2c (3)

where θ = Tc/T is a dimensionless number which represents the ratio
between the critical temperature Tc (the temperature at which the two
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phases attain the same composition) and the absolute temperature T .

2.1 The energy functional for the Cahn-Hilliard equation

An important feature of the Cahn-Hilliard model is the existence of an energy
functional given by the Ginzburg-Landau free energy, namely

E(c) =
∫

Ω
(Ψc + Ψs) dx (4)

where Ψc is the chemical free energy and Ψs a surface free energy term. Ac-
cording to the original model of Cahn and Hilliard [12,13], the surface free
energy is given by

Ψs = Nω
1

2
λ||∇c||2 (5)

while the chemical free energy takes the form

Ψc = NkT (c log c + (1− c) log(1− c)) + Nωc(1− c) (6)

where N is the number of molecules per unit volume, k is Boltzmann’s constant
and ω is an interaction energy, which, for a system with a miscibility gap, is
positive and is related to the critical temperature by

ω = 2kTc (7)

For θ = Tc/T > 1, the chemical free energy is non-convex, with two wells,
which drive phase segregation into the two binodal points (values of c that
minimize the chemical free energy). For θ ≤ 1 it has a single well and admits
a single phase only.

The chemical potential µc is given by µc = Ψc′/(Nω), where Ψc′ is the deriva-
tive of Ψc with respect to c. Due to the complexity of the function Ψc, some
simpler approximations are normally employed. In particular, a polynomial of
degree four has been used to approximate the chemical free energy in most ana-
lytic studies and numerical simulations . The paper by Debussche and Detorri
[22] (from the analytic point of view) and the papers by Wells et al. [74],
Copetti et al. [19] and Xia et al. [75] (from the numerical point of view) deal
with the issue of logarithmic free energy. In the present work we will use the
logarithmic function given by (6).

Remarks:

(1) According to the Cahn-Hilliard model, the concentration is driven to the
binodal points (those values of c that minimize the chemical free energy)
and not to the pure phases.
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(2) The energy functional given by (4) constitutes a Lyapunov functional
since some simple manipulations lead to the inequality

dE

dt
= −

∫

Ω
∇(−λ∆c + µc)Mc∇(−λ∆c + µc)dx ≤ 0 (8)

where E is a real-valued function defined as E(t) = E(c(·, t)).

2.2 Dimensionless form of the Cahn-Hilliard equation

In the numerical examples presented in this paper, we will use a dimensionless
form of the Cahn-Hilliard equation. To derive the dimensionless equation, we
introduce non-dimensional space and time coordinates

x? = x/L0, t? = t/T0 (9)

where L0 is a representative length scale and T0 = L4
0/(Dλ). In the dimen-

sionless coordinates, the Cahn-Hilliard equation becomes

∂c

∂t?
= ∇? · (M?

c∇?(µ?
c −∆?c)) (10)

where M?
c = c(1− c) and µ?

c = µcL
2
0/λ.

We will also make use of the dimensionless Ginzburg-Landau free energy given
by

E? =
∫

Ω?

(

c log c + (1− c) log(1− c) + 2θc(1− c) +
θ

3α
||∇?c||2

)

dx
? (11)

where E? = E(NkTL3
0)

−1 and

α =
L2

0

3λ
(12)

is a dimensionless number related to the inverse of the thickness of the inter-
faces. The thickness of the interface is inversely proportional to α1/2.

Following [74], we will take the value θ = 3/2 for the temperatures ratio (this
corresponds to a physically relevant case). Therefore, the value of α completely
characterizes our solutions.

Remark:

In what follows we will use the dimensionless form of the Cahn-Hilliard equa-
tion. For notational simplicity, we will omit the superscript stars henceforth.
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3 Numerical formulation

3.1 Continuous problem in the weak form

We begin by considering a weak form for the Cahn-Hilliard equation. Let V
denote the trial solution and weighting functions spaces, which are assumed
to be identical. At this point we consider periodic boundary conditions in
all directions. Therefore, the variational formulation is stated as follows: find
c ∈ V such that ∀w ∈ V,

B(w, c) = 0 (13)

where

B(w, c) =

(

w,
∂c

∂t

)

Ω

+ (∇w, Mc∇µc +∇Mc∆c)Ω + (∆w, Mc∆c)Ω (14)

being (·, ·)Ω the L2 inner product with respect to the domain Ω. The space
V = H2 is a Sobolev space of square integrable functions with square integrable
first and second derivatives.

The repeated integration by parts of equation (14) under the assumptions
of periodic boundary conditions and sufficient regularity leads to the Euler-
Lagrange form of (14):

(

w,
∂c

∂t
−∇ · (Mc∇(µc −∆c))

)

Ω
= 0 (15)

which implies the weak satisfaction of equation (10).

We refer to this formulation as the primal variational formulation.

3.2 The semidiscrete formulation

For the space discretization of (13) we make use of the Galerkin method. We
approximate (13) by the following variational problem over the finite element
spaces: find ch ∈ Vh ⊂ V such that ∀wh ∈ Vh ⊂ V

B(wh, ch) = 0 (16)

where wh and ch are defined as
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Fig. 1. One-dimensional C1-continuous quadratic periodic basis functions

wh =
nb
∑

A=1

wANA, (17)

uh =
nb
∑

A=1

uANA. (18)

The NA’s are the basis functions, and nb is the dimension of the discrete space.
Note that the condition Vh⊂V mandates our discrete space to be at least H2-
conforming. This requirement is satisfied by a NURBS basis of C1-continuity or
higher. In this paper we consider rectangular geometries. In this setting, three-
dimensional NURBS reduce to simple B-splines in the usual tensor-product
format [46]. An illustration of quadratic B-spline basis functions for an eight
element mesh in one dimension is presented in Figure 1. The functions are C1-
continuous at knots and are C∞-continuous elsewhere. Note that the functions
are non-interpolatory at knots. As a result, the solution coefficients in (18),
referred to as control variables, are not associated with the function value at
nodes, as in conventional finite element analysis. In the variational methods
literature they are sometimes referred to as generalized coordinates.

3.3 Time discretization and numerical implementation

We integrate in time using the generalized-α method. This method was origi-
nally derived in [18] for the equations of structural dynamics and subsequently
applied to turbulence computations in [3,7,48]. In addition, we propose a time-
step size predictor algorithm that allows us to compute three-dimensional sta-
tionary solutions in an affordable compute time.
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3.3.1 Time-stepping scheme

Let C and Ċ denote the vector of degrees of freedom of concentration and
concentration time derivative, respectively. We define the residual vector as

R = {RA} (19.1)

RA = B(NA, ch) (19.2)

The algorithm can be stated as: given Ċn, Cn and ∆tn = tn+1−tn, find Ċn+1,
Cn+1, Ċn+αm

, Cn+αf
such that

R(Ċn+αm
, Cn+αf

) = 0, (20.1)

Cn+1 = Cn + ∆tnĊn + γ∆tn(Ċn+1 − Ċn), (20.2)

Ċn+αm
= Ċn + αm(Ċn+1 − Ċn), (20.3)

Cn+αf
= Cn + αf(Cn+1 −Cn). (20.4)

where ∆tn is the current time-step size and αm, αf and γ are real-valued
parameters that define the method. Parameters αm, αf and γ are selected
based on considerations of accuracy and stability. Taking αm = αf = γ =
1, the first order backward Euler method is obtained. Jansen, Whiting and
Hulbert proved in [48] that, for a linear model problem, second-order accuracy
in time is achieved if

γ =
1

2
+ αm − αf (21)

and unconditional stability is attained if

αm ≥ αf ≥ 1/2 (22)

Parameters αm, αf can be parameterized in terms of ρ∞, the spectral radius
of the amplification matrix as ∆t → ∞, which controls high-frequency dissi-
pation [45]:

αm =
1

2

(

3− ρ∞

1 + ρ∞

)

, αf =
1

1 + ρ∞

(23)
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Setting γ according to (21), a family of second-order accurate and uncondi-
tionally stable time integration schemes is defined in terms of the parameter
ρ∞ ∈ [0, 1]. The nonlinear system of equations (20) is solved by using Newton’s
method, which leads to a two-stage predictor-multicorrector algorithm.

Predictor stage: Set

Cn+1,(0) = Cn, (24.1)

Ċn+1,(0) =
γ − 1

γ
Ċn. (24.2)

where subscript 0 on the left-hand-side quantities denotes the iteration index
of the non-linear solver. This predictor was shown to be efficient for turbulence
applications [3,7,48].

Multicorrector stage: Repeat the following steps for i = 1, 2, . . . , imax

(1) Evaluate iterates at the α-levels

Ċn+αm,(i) = Ċn + αm(Ċn+1,(i−1) − Ċn), (25.1)

Cn+αf ,(i) = Cn + αf (Cn+1,(i−1) −Cn). (25.2)

(2) Use these α-level iterates to assemble the residual and the tangent matrix
of the linear system

K(i)∆Ċn+1,(i) = −R(i) (26)

Solve this linear system using a preconditioned GMRES algorithm (see
Saad and Shultz [64]) to a specified tolerance.

(3) Use ∆Ċn+1,(i) to update the iterates as

Ċn+1,(i) = Ċn+1,(i−1) + ∆Ċn+1,(i), (27.1)

Cn+1,(i) = Cn+1,(i−1) + γ∆tn∆Ċn+1,(i). (27.2)

This completes one non-linear iteration.

The tangent matrix in equation (26) is given by
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K =
∂R(Ċn+αm

, Cn+αf
)

∂Ċn+αm

∂Ċn+αm

∂Ċn+1

+
∂R(Ċn+αm

, Cn+αf
)

∂Cn+αf

∂Cn+αf

∂Ċn+1

= αm

∂R(Ċn+αm
, Cn+αf

)

∂Ċn+αm

+ αfγ∆tn
∂R(Ċn+αm

, Cn+αf
)

∂Cn+αf

(28)

where the iteration index i has been omitted to simplify the notation.

Remarks:

(1) The value ρ∞ = 0.5 has been shown to be an efficient choice for turbu-
lence computations [7]. We adopted this value for all the computations
presented in this paper.

(2) We used the consistent tangent matrix in our computations. Two to four
nonlinear iterations are typically required to reduce the nonlinear resid-
ual to 10−4 of its initial value in a time step. The solution of system (26)
to a tolerance of 10−4 requires normally 30 to 40 GMRES iterations us-
ing a diagonal preconditioner. The authors are currently working on the
development of more efficient preconditioners.

3.3.2 Time-step size adaptivity

We borrowed ideas from embedded Runge-Kutta methods [8,41,71] to develop
this algorithm. We took advantage of the fact that the generalized-α method
becomes the backward Euler method when αm = αf = γ = 1. The adaptive
time step strategy is presented in Algorithm 1. The formula we use to update
the time-step size is

F (e, ∆t) = ρ

(

tol

e

)1/2

∆t (29)

Our default values for the safety coefficient ρ and the tolerance tol are those
suggested in [57], that is, ρ = 0.9 and tol = 10−3.

The adaptive time stepping technique allows us to reduce the compute time by
factors of hundreds compared to the compute time keeping the time-step size
constant. Moreover, it provides an estimate of the time integration accuracy.

Remark:

When Algorithm 1 is used, the computed solution will be rejected and recom-
puted if the accuracy criterion is not fulfilled. Typically, fewer than 10% of
the time steps are rejected using the safety coefficient ρ = 0.9.
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Algorithm 1 Time step adaptive process

Given: Cn, Ċn and ∆tn
1: Compute C

BE
n+1 using backward Euler and ∆tn

2: Compute C
α
n+1 using second-order generalized-α and ∆tn

3: Calculate en+1 = ||CBE
n+1 −C

α
n+1||/||Cα

n+1||
4: if en+1 > tol then

5: Recalculate time-step size ∆tn ←− F (en+1, ∆tn)
6: goto 1
7: else

8: Update time-step size ∆tn+1 = F (en+1, ∆tn)
9: continue

10: end if

4 Numerical results

In this section we investigate the performance of our spatial and temporal
discretization strategies for the general Cahn-Hilliard model. We limit our
studies to simple geometrical domains in an effort to focus our attention on
the physical and numerical aspects of the problem. The domain of the test
cases is a box Ω = (0, 1)d, where d = 2 or 3. At the computational domain
boundary, periodic boundary conditions are imposed in all directions. The
spatial discretization is comprised of quadratic spline functions that are C1-
continuous at knots. We employ meshes that are uniform in all directions.

The higher-order and higher-continuity spline basis functions allow the use
of a Galerkin technique which yields a simple methodology. The efficiency,
accuracy and robustness of the methodology enabled us to obtain the following
results:

(1) Three-dimensional solutions for the general Cahn-Hilliard equation.

There are few published numerical results of the general case that we an-
alyze in this paper. To our knowledge, only [74] and [75] report numerical
solutions to this model, but the examples are limited to 2D domains and
early times.

(2) Long-time behavior of the solution in three dimensions.

The behavior of the stationary solutions in multidimensions is not well
understood [1,14,17]. In most of the works reported on in the literature
only the fast evolution of the concentration that takes place at the be-
ginning of the segregation process is computed, so the coarsening process
is completely neglected. This is due to the fact that the time integration
of the Cahn-Hilliard equation is very time consuming and an efficient
algorithm is necessary to be able to compute stationary solutions.

We remark that in our experience obtaining stationary solutions to the
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Cahn-Hilliard equation is much more challenging than computing only
initial fast dynamics.

(3) Statistical studies of solutions with random initial conditions.

The most commonly used initial condition for the Cahn-Hilliard equation
is

c0(x) = c + r, (30)

where c is a constant (referred to as the volume fraction) and r is a
random variable with uniform distribution. This fact makes difficult the
comparison of solutions in terms of the Ginzburg-Landau free energy (the
quantity that better describes the behavior of the solutions to the Cahn-
Hilliard equation) because it is dependent on the initial condition. As
a consequence, some statistics are necessary to compare numerical solu-
tions. The statistics we consider in this work are the statistical moments
up to order 10. The k-th order statistical moment is defined as,

Mk =
∫

Ω
(c− c)kdΩ (31)

In the numerical examples, unless otherwise specified, r is a random vari-
able with uniform distribution in [−0.05, 0.05].

(4) A study of several values of the volume fraction.

Although the Cahn-Hilliard phase-field model was proposed five decades
ago, there is still a lack of understanding of basic points. In particular, a
study of simulations for several values of the volume fraction is lacking,
even for the quartic chemical potential [68]. Studies of this kind are fun-
damental to understanding the model because the topology of solutions
is strongly dependent on the volume fraction c.

4.1 Numerical examples in two-dimensions

In this section we point out the main difficulties involved in computing solu-
tions to the Cahn-Hilliard equation. We pay special attention to the computa-
tion of stationary solutions, which in our experience is a much more challeng-
ing problem than the computation of transient solutions at early and medium
times. We study the following issues:

(1) Convergence of the numerical solution under h-refinement
(2) Dependence of the solution on the volume fraction c
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4.1.1 Convergence of the numerical solution under h-refinement

We present two test cases which are defined by the sharpness parameter α and
the volume fraction c. We take the value c = 0.63 in both cases. The sharpness
parameter takes the values 3000 and 6000.

The initial condition is generated using equation (30). To perform the h-
refinement study, the initial random distribution was generated on the coarsest
mesh and then reproduced on the finer meshes. Thus, the initial condition is
exactly the same on all meshes since the solution spaces are nested when the
refinement is performed by knot insertion (see Hughes, Cottrell and Bazilevs
[46]). The reason for doing this is that if the initial condition was generated by
randomly perturbing control variables on each mesh, the Ginzburg-Landau en-
ergy would be significantly higher on the finer meshes, making the comparison
of the energy on different meshes meaningless.

We will compare the solutions on the basis of statistical moments of order 2,
3 and 10 and the Ginzburg-Landau free energy.

(a) α = 3000

We computed solutions on 322, 642 and 1282 meshes. The finer meshes are
obtained from the coarser meshes by knot insertion [20,46]. Figures 2, 3 and
4 show, respectively, the evolution of the statistical moments of order 2, 3
and 10. The evolution of the free energy is depicted in Figure 5. Figures 2–
5 show convergence under h-refinement. That is, given an initial condition,
the evolution of the statistical moments and energy converges. The maximum
difference in M10 between the 642 mesh and the 1282 mesh is less than 5%,
and the energy difference is barely discernible.

Figure 6 shows snapshots of the solution computed on a 642 mesh (the results
computed on a 1282 mesh were indistinguishable from the 642 case, while the
solution computed on a 322 mesh was significantly less accurate). We observe
that the concentration is driven to the binodal points in a very fast process.
The separation occurs approximately between the times t = 2 · 10−6 and
t = 4 · 10−6 and is driven by the minimization of the chemical free energy
Ψc. This explains the fast variation of the Ginzburg-Landau free energy that
takes place in the time interval [2 · 10−6, 4 · 10−6] (see figure 5). After the
phase separation, the coarsening process starts. The coarsening is driven by
the minimization of the surface free energy Ψs. The representative time scales
of the coarsening process are much larger than those of the separation process.

Remarks:

(1) Numerical solutions to this example can be found in [74] and [75] (the
initial condition is identical in the statistical sense). In those references,
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Fig. 2. Evolution of the second-order statistical moment of the concentration (M2)
for α = 3000 and c = 0.63
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Fig. 3. Evolution of the third-order statistical moment of the concentration (M3)
for α = 3000 and c = 0.63

the solution is computed on finer meshes (802 linear elements in [75]
and 10283 quadratic elements in [74]). Additionally, in [75] the Cahn-
Hilliard equation is reformulated as a five-equation system that results
in a much larger number of degrees of freedom. In [74] is also reported
the solution to this problem using mixed finite elements on a 802 mesh.
This approach also requires the introduction of a number of additional
degrees of freedom as compared to our method. Our solution computed
on a mesh of 642 elements appears to be at least of equivalent quality to
those reported on [74] and [75].
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Fig. 5. Evolution of the Ginzburg-Landau free energy (E) for α = 3000 and c = 0.63

(2) The curve that corresponds to the 322 mesh in Figure 5 is not defined for
certain times. This is due to the fact the mesh was not fine enough for
this problem and the numerical solution at those times was outside the
physical range [0, 1], the only interval where the energy is defined. (The
authors anticipate using the Variational Multiscale Method [44,47] to
address the numerical approximation of problems where the characteristic
length scale of the equation is clearly unresolved by the computational
mesh.)

(3) It is often argued that it is not possible to capture thin layers using high
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(a) t = 2.011 · 10−6 (b) t = 4.243 · 10−6 (c) t = 8.327 · 10−6

(d) t = 1.605 · 10−5 (e) t = 3.118 · 10−5 (f) t = 6.098 · 10−5

(g) t = 1.324 · 10−4 (h) t = 2.656 · 10−4 (i) Steady state

Fig. 6. Evolution of the concentration from a randomly perturbed initial condition
for α = 3000, c = 0.63. The mesh is comprised of 642 quadratic elements.

continuity basis functions. In this example a thin internal layer has been
captured in an accurate and stable way using C1-continuous basis func-
tions. In Figure 8 we present cutlines of the steady solution for constant
values of x corresponding to the vertical cutlines represented on the left
hand side of Figure 7. In Figure 8, n and m represent the knot number in
the x direction and y direction, respectively (see also Figure 7). We sam-
ple the solution at knots and plot it using piecewise linear interpolation.
The solution is monotone and the layer is captured within 4 elements.
We also ran this example using C3-continuous quartic basis functions. For
this case we were forced to use a different initial condition because the
solution spaces are not nested when k-refinement is performed. In Figure
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Fig. 7. Steady state solutions of the problem defined by α = 3000 and c = 0.63.
In both pictures (left and right), the initial condition is the same from a statistical
point of view, but not from a deterministic point of view. The mesh is comprised of
642 quadratic C1-continuous elements for the solution on the left hand side and 642

quartic C3-continuous elements for the solution on the right hand side. The vertical
lines on the left and right hand side pictures represent the cutlines that have been
plotted in Figure 8 and 9, respectively.

9 we represent cutlines of the steady state solution for constant values
of x (this corresponds to the vertical cutlines on the right hand side of
Figure 7).

(b) α = 6000

This test case is more challenging than the previous one, because the param-
eter α is larger. This means that the interfaces are thinner, which, in turn,
requires a finer spatial mesh. In addition, this case is more interesting from
the physical point of view, since phase-field models tend to sharp-interface
models as the thickness of the interfaces tends to zero.

We computed solutions on 642, 1282 and 2562 meshes. We plot snapshots of
the solution computed on the 642 and 1282 meshes. The results on the 2562

mesh were indistinguishable from those on the 1282 mesh.

In Figures 10 and 11 we observe that the solutions at early and medium times
on the 642 and 1282 meshes are very similar. Only at the steady state do the so-
lutions have significant differences. This example shows the difficulty involved
in computing steady-state solutions to the Cahn-Hilliard equation. Obtaining
stationary solutions is much more challenging than computing transient solu-
tions at early and medium times not only from the point of view of the time
integration, but also from the point of view of the spatial discretization.

The modification of the parameter α has not only changed the thickness of
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(a) t = 1.878 · 10−6 (b) t = 4.060 · 10−6 (c) t = 8.042 · 10−6

(d) t = 1.598 · 10−5 (e) t = 3.270 · 10−5 (f) t = 6.274 · 10−5

(g) t = 1.257 · 10−4 (h) t = 2.665 · 10−4 (i) Steady state

Fig. 10. Evolution of the concentration from a randomly perturbed initial condition
for α = 6000, c = 0.63. The mesh is comprised of 642 quadratic elements.

the interfaces, but it has also significantly modified the time scales of the
problem. For example, the separation process is much faster for α = 6000
than for α = 3000.

Figures 12, 13 and 14 show the evolution of the statistical moments of order
2, 3 and 10, respectively. The evolution of the free energy has been depicted
in Figure 15. Figures 12–15 demonstrate convergence under h-refinement.

Remarks:

(1) We investigated the possibility that the parameter tol, the tolerance used
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(a) t = 1.837 · 10−6 (b) t = 3.821 · 10−6 (c) t = 7.801 · 10−6

(d) t = 1.641 · 10−5 (e) t = 3.246 · 10−5 (f) t = 6.190 · 10−5

(g) t = 1.237 · 10−4 (h) t = 2.557 · 10−4 (i) Steady state

Fig. 11. Evolution of the concentration from a randomly perturbed initial condition
for α = 6000, c = 0.63. The mesh is comprised of 1282 quadratic elements.

to estimate the time-step size, affected the results. We ran cases with
tol = 10−3 (our default value) and tol = 10−4. We found no discernible
differences in the computed statistics, while the time-step size was signif-
icantly smaller.

(2) We analyzed the performance of our time-step size predictor by running
a simple case taking a constant time-step size ∆t = 10−9 (this was less
than the minimal time-step size employed by our time integrator for that
problem). We found no discernible differences in the computed statistics,
which suggests that our adaptive time-stepping technique gives us very
accurate solutions at a small fraction of the cost of the constant time-step
strategy.
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Fig. 12. Evolution of the second-order statistical moment of the concentration (M2)
for α = 6000 and c = 0.63
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Fig. 13. Evolution of the third-order statistical moment of the concentration (M3)
for α = 6000 and c = 0.63

(3) Our time-stepping strategy enabled us to integrate the equations in time
up to t ≈ 10100, where the solutions were considered steady, at a reason-
able computational cost.

(4) Most of the time-step size selection criteria that have been previously
published are based on the free-energy decay. The fulfilment of inequality
(8) at the discrete level is the condition more frequently asked for in Cahn-
Hilliard simulations. In our experience, this is a very weak condition and
the numerical solution can be completely wrong even if (8) is satisfied at
the discrete level. Moreover, we found that the evolution of the energy is
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Fig. 14. Evolution of the tenth-order statistical moment of the concentration (M10)
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Fig. 15. Evolution of the Ginzburg-Landau free energy (E) for α = 6000 and c = 0.63

much more dependent on the spatial resolution rather than the temporal
resolution.

(5) The time-step size predicted by our method is fairly independent of the
spatial mesh. We plot in Figure 16 the evolution of the time-step size
for the simulation of the problem defined by α = 3000 and c = 0.63 on
two different meshes. A similar behavior can be observed. Also, it is an
instructive exercise to compare the evolution of the time-step size (Figure
16) with the evolution of the Ginzburg-Landau free energy (Figure 15).
We observe that the separation process (identified in the energy plot by
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Fig. 16. Evolution of the time-step size on a doubly logarithmic plot for α = 3000,
c = 0.63

the fast variation in the temporal interval [2 · 10−6, 4 · 10−6]) is computed
using very small time-step sizes. After the separation process is finished,
the coarsening process starts. The coarsening takes place at much larger
time scales what is reflected by our time-step size predictor. Finally, we
relate the fast variations of the time-step size in the last part of the
simulation, t ∈ [2 ·10−4, 4 ·10−2] to the rough variations of the free energy
that take place at those times, which we conjecture is due to coalescence
of bubbles.

(6) We use Gauss quadrature in all cases. We ran some of the test cases using
3 and 4 integration points per element in each direction. The computed
statistics were indistinguishable.

(7) Low-order statistical moments are not good discriminators in most of the
cases, while higher-order moments are, as M10 illustrates in Figures 4 and
14. The Ginzburg-Landau free energy is the most informative quantity
for comparing solutions at steady state, since the stationary solution can
be defined as the one that minimizes the energy functional. However, the
energy at short and medium times depends on the initial condition, which
makes use of statistical moments necessary.

(8) We ran examples with different distributions for the random variable r.
The distributions were uniform in [−L, L], where L = 5·10−2 (our default
value), L = 5 · 10−4 and L = 5 · 10−5. In the first two cases, although
the statistics were different, we found similar dynamical processes. There
was no phase separation for the case L = 5 · 10−5. In our experience it is
very important that the pseudo-random number generator is statistically
reliable. We recommend that standard tests [54] be used to verify its
quality.

(9) We ran the previous examples on the domain Ω = (0, 2)2 to study the
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Fig. 17. Evolution of the second-order (M2) and fourth-order (M4) statistical mo-
ments of the concentration for α = 3000 and c = 0.50. The mesh is comprised of
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dependence of the solution on the size of the domain. The computed
statistics were very similar.

4.1.2 Dependence of the solution on c

We present the numerical solution to the case defined by c = 0.50 and α =
3000. The mesh is comprised of 1282 quadratic elements. We plot the evolution
of the statistical moments of order 2 and 4 (Figure 17) and 3 and 5 (Figure
18). The evolution of the Ginzburg-Landau free energy is depicted in Figure
19. We present snapshots of the solution in Figure 21.

This solution presents two main differences as compared to those reported in
the previous section:

(1) The topology of the solution is different than for the case c = 0.63. This is
the typical topology corresponding to c = 0.50. A deeply interconnected
pattern is characteristic of this topology. In the cases presented in Section
4.1.1 the masses of the two phases were substantially different (c = 0.63
and 1− c = 0.37), which leads to the phenomenon of nucleation. In this
case, one finds irregular droplets that evolve to circular shapes whose
characteristic length increases with time [39]. Also, we observe that the
energy plot is smoother for c = 0.50 than for c = 0.63. This is due to
the fact that the coarsening process is more continuous for this case, as
a consequence of the absence of nucleation.

(2) In the case c = 0.50 the exact solution at the steady state is a strip instead
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Fig. 19. Evolution of the Ginzburg-Landau free energy for α = 3000 and c = 0.50.
The mesh is comprised of 1282 quadratic elements.

of a circle. Geometrical arguments support this. Further discussion about
this point will be presented in the sequel.

In Figure 20 we present the evolution in time of the time-step size for this
case, which is significantly different than that in Figure 16. The reason is,
again, the different topology of the solution. In the case defined by c = 0.50
there is no nucleation and, as a consequence, the coarsening process is more
continuous, which is reflected by our time-step size predictor (compare Figure
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16 with Figure 20). This fact can also be observed in the plot of the Ginzburg-
Landau free energy (Figure 19) which is significantly smoother than that of
Figure 5. The only sign of nucleation is observed in the (g) and (h) snapshots
of Figure 21, corresponding to local minima in the time-step size plot (Figure
20) and with small but rapid variations in the Ginzburg-Landau free energy
(see Figure 19).

4.1.3 Topology of the steady-state solution and the isoperimetric problem

The interest in stationary solutions to the Cahn-Hilliard equation (besides the
multiple applications of this model in material science) is its relation with the
periodic isoperimetric problem [42], which is one of the major open problems in
geometry. It was shown in [62,65] that minimizers of the Ginzburg-Landau free
energy (under an appropriate rescaling) converge to solutions of the isoperi-
metric problem when α→∞ and θ →∞.

In a 2D periodic square (2D flat torus) the solution of the periodic isoperimet-
ric problem is well known: the minimizers are either a circle (when 0 < c ≤ 1/π
or 1−1/π ≤ c ≤ 1) or a strip (when 1/π ≤ c ≤ 1−1/π) but in 3D the periodic
isoperimetric problem remains open even in a periodic cube 1 .

The 2D solutions to the periodic isoperimetric problem (a circle and a strip)
correspond to the solutions that we obtained for c = 0.63 (circle) and c = 0.50

1 It has been conjectured that the possible solutions are either a sphere, a cylinder
or two parallel planes.
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(a) t = 1.971 · 10−6 (b) t = 3.764 · 10−6 (c) t = 7.601 · 10−6

(d) t = 1.609 · 10−5 (e) t = 3.134 · 10−5 (f) t = 6.530 · 10−5

(g) t = 1.390 · 10−4 (h) t = 2.474 · 10−4 (i) Steady state

Fig. 21. Evolution of the concentration from a randomly perturbed initial condition
for α = 3000, c = 0.50. The mesh is comprised of 1282 quadratic elements.

(strip). These solutions were obtained for α = 3000 and α = 6000 in the case
of the circle and for α = 3000 in the case of the strip. In all cases θ = 3/2.

According to the results quoted for the isoperimetric problem, the case given
by c = 0.63, although close to the limit value 1− 1/π, corresponds to a strip,
while the computed solution for the Cahn-Hilliard equation is a circle. This is
due to θ not being large enough. Increasing θ drives the binodal points closer to
the pure phases. In this case, the strip is an energetically better solution than
the circle. We feel it is important that our solutions correspond to solutions
of the periodic isoperimetric problem. This link is relevant to discriminate
between physically acceptable and unacceptable solutions.
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Remark:

If the Cahn-Hilliard phase-field model is to be used for the approximation
of solutions of the isoperimetric problem, the authors recommend the use
of constant mobility and quartic chemical potential, which also converges to
solutions of the isoperimetric problem as α→∞, but requires a significantly
smaller compute time.

4.1.4 Mesh-independent Cahn-Hilliard phase-field model

The Cahn-Hilliard phase-field model converges, in a thermodynamically con-
sistent fashion, to its corresponding sharp-interface model as

√
λ (the charac-

teristic length scale of the model) tends to zero. In order for the Cahn-Hilliard
phase-field model to be realistic for engineering applications, λ has to be ex-
tremely small. On the other hand, if the computational mesh is not fine enough
to resolve the internal layers whose size is defined by the length scale

√
λ, non-

physical solutions are obtained.

To desensitize this mesh dependence, we propose to relate the characteristic
length scale of the continuous phase-field model to the characteristic length
scale of the computational mesh. In the ideal case we would obtain the best
approximation to the sharp-interface model for a given mesh. Also, we are
seeking a method that preserves the topology of the solution at the steady
state independently of the mesh size while the thickness of the interface is
enlarged according to the spatial resolution.

Numerical results using

λ = τh2, (32)

where τ is a dimensionless constant, have shown the potential of this approach.
The value of τ has been determined by means of numerical examples. It turned
out that the maximum value of τ that can be used retaining mesh invariance
depends on the average concentration c. The closer c is to 0.5 the larger τ has
to be and, consequently, the thicker the interface. We show examples using
τ = 1 for c = 0.63 and τ = 2.5 for c = 0.50. The results are encouraging.

In the first example, c = 0.63. In Figure 22 we show the solutions on uni-
form meshes comprised of 322, 642 and 1282 quadratic elements. The initial
condition is generated by randomly perturbing control variables on the 322

mesh and then it is exactly reproduced on the finer meshes as in the previous
numerical examples. On the left hand side, we plot the solution using for all
meshes λ = τ128−2 where τ = 1. We find a strong dependence of the solution
on the mesh size. On the right hand side we plot the solution adapting λ to
the resolution of the computational mesh through use of equation (32) with
τ = 1. In this case, the topology of the numerical solution is independent of
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the mesh size and the interface is captured on all meshes within 4–5 elements.

In the second example, c = 0.5. In Figure 23 we show the solution on uniform
meshes comprised of 322, 642 and 1282 quadratic elements. The initial condi-
tion is generated in the same way as in the previous example. The solutions on
the left hand side have been computed using λ = τ128−2 for all meshes with
τ = 2.5. A strong dependence of the solution on mesh size is observed. The
solutions on the right hand side of Figure 23 have been computed adapting λ
to the resolution of the computational mesh using equation (32) and τ = 2.5.
The topology of the numerical solution is again invariant with respect to the
mesh size and the interface is captured on all meshes within 4–5 elements.

The previous examples show the potential of the proposed approach to suc-
cessfully deal with problems where the characteristic length scale of the contin-
uous phase-field model is unresolved by the computational mesh. We believe
that with this technique phase-field modeling, which has been used heretofore
primarily in scientific studies, may become a practical engineering technology.

4.2 Numerical examples in three-dimensions

The complexity involved in the approximation of a 3D solution to the Cahn-
Hilliard equation is much greater than for the 2D problem. The topology of
the solution is much more complex and it experiences significant changes as
time evolves. There seems to be almost nothing known about the steady state
solutions in 3D.

There are few references reporting numerical solutions to the Cahn-Hilliard
phase-field model with degenerate mobility and logarithmic free energy. To our
knowledge, the numerical solutions presented in the literature are limited to
the early part of the simulation in 2D domains. We present herein stationary
solutions in 3D domains.

4.2.1 α = 200, c = 0.63

We computed the solution on a 1283 mesh. We plot the evolution of the statis-
tical moments of order 2, 4 (Figure 24) and 3 (Figure 25). The evolution of the
Ginzburg-Landau free energy is depicted in Figure 26. We present snapshots
of isosurfaces of the concentration in Figure 27. We observe that the ran-
domly perturbed constant concentration evolves to a complex interconnected
pattern. We did not find any sign of nucleation for this example, in contrast
with the 2D counterpart of this problem (see Section 4.1.1). The steady state
solution is a cylinder, which is one of the conjectured solutions for the periodic
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(a) λ = τ128−2. The mesh is 322 (b) λ = τ32−2. The mesh is 322

(c) λ = τ128−2. The mesh is 642 (d) λ = τ64−2. The mesh is 642

(e) λ = τ128−2. The mesh is 1282 (f) λ = τ128−2. The mesh is 1282

Fig. 22. Steady state solutions to the problem defined by c = 0.63. We show the
solutions on uniform meshes comprised of 322 (a)–(b), 642 (c)–(d) and 1282 (e)–(f)
quadratic elements. On the left hand side we plot the solution using λ = τ128−2

for all meshes with τ = 1. The dependence of the solution on the mesh size h is
apparent. On the right hand side we plot the solutions adapting λ to the resolution
of the computational mesh. The topology of the solution is invariant with respect
to the mesh size. The only difference in the solutions on the right hand side is the
thickness of the interface.

33



(a) λ = τ128−2. The mesh is 322 (b) λ = τ32−2. The mesh is 322

(c) λ = τ128−2. The mesh is 642 (d) λ = τ64−2. The mesh is 642

(e) λ = τ128−2. The mesh is 1282 (f) λ = τ128−2. The mesh is 1282

Fig. 23. Steady state solution to the problem defined by c = 0.50. We show the
solutions on uniform meshes comprised of 322 (a)–(b), 642 (c)–(d) and 1282 (e)–(f)
quadratic elements. On the left hand side we plot the solution using λ = τ128−2

for all meshes with τ = 2.5. The dependence of the solution on the mesh size h is
apparent. On the right hand side we plot the solutions adapting λ to the resolution
of the computational mesh. The topology of the solution is invariant with respect
to the mesh size. The only difference in the solutions on the right hand side is the
thickness of the interface.
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Fig. 24. Evolution of the second-order (M2) and fourth-order (M4) statistical mo-
ments of the concentration for α = 200 and c = 0.63. The mesh is comprised of
1283 quadratic elements.
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Fig. 25. Evolution of the third-order statistical moment of the concentration (M3)
for α = 200 and c = 0.63. The mesh is comprised of 1283 quadratic elements.

isoperimetric problem.

4.2.2 α = 600, c = 0.75

In the 2D case there are small topological differences between c = 0.63 and
c = 0.75, but in the 3D problem there are significant differences. In the latter
case, we found that one of the species nucleated. As before, the steady state
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Fig. 26. Evolution of the Ginzburg-Landau free energy (E) for α = 200, c = 0.63.
The mesh is comprised of 1283 quadratic elements.

is a cylinder.

We computed the solution on a 1283 mesh. We plot the evolution of the statis-
tical moments of order 2, 4 (Figures 28) and 3 (Figure 29). The evolution of the
Ginzburg-Landau free energy is depicted in Figure 30. We present snapshots
of isosurfaces of the concentration in Figure 31.

5 Conclusions

We presented a numerical methodology for the approximation of the general
Cahn-Hilliard phase-field model. Our method is based on isogeometric analy-
sis, which allows us to generate the C1-continuous functions required to solve
the Cahn-Hilliard equation in a primal variational framework.

We introduced an adaptive time-stepping algorithm which proved to be very
effective for this highly nonlinear problem. We were able to compute steady
state solutions in two and three dimensions. The spatial resolution has a sig-
nificant effect on the numerical solution at the steady state. Non-physical
solutions are obtained at the steady state when the spatial mesh is not fine
enough, a shortcoming not previously emphasized in the literature. However,
this effect is not observed in the early dynamics of the problem.

In the future we envision combining NURBS discretizations that are at least
C1-continuous at patch level and employing the CDG approach of [29,74] at the
patch boundaries. We feel that this would provide a good compromise between
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(a) t = 1.965 · 10−6 (b) t = 1.183 · 10−3

(c) t = 1.514 · 10−3 (d) t = 2.368 · 10−3

(e) t = 5.240 · 10−3 (f) Steady state

Fig. 27. Evolution of the concentration from a randomly perturbed initial condition
for α = 200, c = 0.63. The mesh is comprised of 1283 quadratic elements.
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Fig. 28. Evolution of the second-order (M2) and third-order (M3) statistical mo-
ments of the concentration for α = 600 and c = 0.75. The mesh is comprised of
1283 quadratic elements.
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Fig. 29. Evolution of the third-order statistical moment of the concentration (M3)
for α = 600 and c = 0.75. The mesh is comprised of 1283 quadratic elements.

geometrical flexibility and computational efficiency. We note, however, that
progress in computational geometry suggests that C1-continuous basis, at least
defined almost everywhere, may be a real possibility in the near future.

The computations we performed demonstrated that our method is capable
of giving very accurate and stable results even when the solution possesses
very thin layers that evolve and propagate over the mesh. From the numeri-
cal analysis point of view, it seems apparent that the length-scale parameter
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Fig. 30. Evolution of the Ginzburg-Landau free energy (E) for α = 600, c = 0.75.
The mesh is comprised of 1283 quadratic elements.

associated with the thickness of interfaces should be redefined in terms of the
resolution of the mesh. Studies adopting this approach resulted in solution
topology insensitive to mesh refinement even for very coarse discretizations,
whereas employing a fixed length-scale parameter led to unphysical solutions
on coarse meshes. Further studies of a theoretical nature investigating this
point should prove highly valuable. Nevertheless, this observation has already
illustrated the potential of elevating phase-field modeling from the realm of
purely scientific interest to a practical engineering level.

There is also room for improvement in the Cahn-Hilliard model. We found
that in the case of nucleation the coarsening process does not take place only
through bubbles merging. Some of them vanish without any contact with other
bubbles. Conservation of the formulation creates a non-local “worm hole”
effect in which distant bubbles enlarge when other non-contiguous bubbles
vanish. We observed this behavior even for fairly large values of the thickness
parameter (α ≈ 25000).

In summary, this paper constitutes a first step in the application of isogeomet-
ric analysis to phase-fields models. Although our initial efforts were focused
on the Cahn-Hilliard equation, we feel that the methodology presented herein
shows the way to applications to other areas of engineering interest involv-
ing higher-order spatial operators, such as, for example, liquid-vapor flows,
rotation-free thin shell theory, strain-gradient elastic and inelastic material
models, and dynamic crack propagation.
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(a) t = 3.063 · 10−6 (b) t = 1.114 · 10−3

(c) t = 1.236 · 10−3 (d) t = 2.035 · 10−3

(e) t = 4.168 · 10−3 (f) Steady state

Fig. 31. Evolution of the concentration from a randomly perturbed initial condition
for α = 600, c = 0.75. The mesh is comprised of 1283 quadratic elements.
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